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and

Q1. Suppose that the time to repair a machine is an exponentially distributed ran-

dom variable with mean 2h.

(a) What is the probability that the repair takes more than 2h?

(b) What is the probability that the repair takes more than 5h given that it

has taken more than 3h?

Q2. Alice and Betty enter a beauty parlor simultaneously, Alice to get a manicure

and Betty to get a haircut. Suppose that the time for a manicure (haircut) is

exponentially distributed with mean 20 (30) min.

(a) What is the probability that Alice gets done first?

(b) What is the expected amount of time until Alice and Betty are both done?

Q3. Ron, Sue, and Ted arrive at the beginning of a professor’s office hours. The

amount of time they will stay is exponentially distributed with means of 1, 1/2,

and 1/3 hour.

(a) What is the expected time until only one student remains?

(b) For each student find the probability they are the last student left.

(c) What is the expected time until all three students are gone?

Q4. A telephone booth has 1 telephone and 2 waiting spaces. Suppose people come

in as a Poisson process with rate 2 per minute. Each one use the phone for 1

minute in average, and the usage time is an exponential random variable. Let

X(t) denote the number of people in the booth at time t.

(a) Find the rate matrix for the process.

(b) In the long term, what is the probability that there are 2 persons in the

booth?

Q5. Suppose that the arrival rate at a checkout counter is 2 customers per minute.

A single clerk is working at the counter and the service time is an exponential

random variable with mean time 1/2 minute. However, if there are 3 customers
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or more, then someone will come to help and the service time reduces to a mean

of 1/3 minute.

(a) Set up the queuing model in an infinite matrix.

(b) What is the stationary distribution of the queue?

(c) In the long term, what is probability that there are 4 customers waiting

(including the one being served)?

Q6. Suppose there are three computers in an office that are subject to failure and

repair. The failure of each computer is an exponential distribution with aver-

age once in 50 days; there is only on repairman and the repair time for each

computer is an exponential distribution with mean 2 days. In the long term,

what is the probability that all three computers are functioning?
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11. Solution. Note that in page 101, X(t) = X1(t) + X2(t), where X1(t) is the

number of customers arriving in (0, t] that are still in the process of being served at time

t, and X2(t) is the number of the initial x customers still in the process of being served

at time t. Moreover, X1(t) has a Poisson distribution with parameter λ
µ
(1−e−µt); X2(t)

is independent of X1(t) and has a binomial distribution with parameters x and e−µt.

Hence

E(X(t)) = E(X1(t)) + E(X2(t)) =
λ

µ
(1− e−µt) + xe−µt.

and

Var(X(t)) = Var(X1(t)) + Var(X2(t)) =
λ

µ
(1− e−µt) + xe−µt(1− e−µt)

=

(
λ

µ
+ xe−µt

)
(1− e−µt).

12. Solution. (a) The forward equation is{
P ′
x0(t) = µPx1(t),

P ′
xy(t) = λ(y − 1)Px,y−1(t)− (λ+ µ)yPxy(t) + µ(y + 1)Px,y+1(t), y ≥ 1.

(b) By the forward equation,

m′
x(t) =

∞∑
y=0

yP ′
xy(t) =

∞∑
y=1

yP ′
xy(t)

=
∞∑
y=1

(
λy(y − 1)Px,y−1(t)− (λ+ µ)y2Pxy(t) + µy(y + 1)Px,y+1(t)

)
=

∞∑
y=0

λ(y + 1)yPxy(t)−
∞∑
y=1

(λ+ µ)y2Pxy(t) +
∞∑
y=2

µ(y − 1)yPxy(t)

=
∞∑
y=0

(
λ(y + 1)y − (λ+ µ)y2 + µ(y − 1)y)

)
Pxy(t)

=
∞∑
y=0

(λ− µ)yPxy(t) = (λ− µ)mx(t).

(c) Solving the ODE in (b) under the initial condition

mx(0) =
∞∑
y=0

yPxy(0) =
∞∑
y=0

δxy · y = x,

we get

mx(t) = mx(0)e
(λ−µ)t = xe(λ−µ)t.
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13. Solution. (a) By the forward equation,

s′x(t) =
∞∑
y=0

y2P ′
xy(t) =

∞∑
y=1

y2P ′
xy(t)

=
∞∑
y=1

(
λy2(y − 1)Px,y−1(t)− (λ+ µ)y3Pxy(t) + µy2(y + 1)Px,y+1(t)

)
=

∞∑
y=0

λ(y + 1)2yPxy(t)−
∞∑
y=1

(λ+ µ)y3Pxy(t) +
∞∑
y=2

µ(y − 1)2yPxy(t)

=
∞∑
y=0

(
λ(y + 1)2y − (λ+ µ)y3 + µ(y − 1)2y)

)
Pxy(t)

=
∞∑
y=0

(
2(λ− µ)y2 + (λ+ µ)

)
Pxy(t)

= 2(λ− µ)sx(t) + (λ+ µ)mx(t)

= 2(λ− µ)sx(t) + (λ+ µ)xe(λ−µ)t.

(b) Solving the ODE in (a) under the initial condition

sx(0) =
∞∑
y=0

y2Pxy(0) =
∞∑
y=0

δxy · y2 = x2,

we get

sx(t) =


(
x2 +

λ+ µ

λ− µ
x

)
e2(λ−µ)t − λ+ µ

λ− µ
xe(λ−µ)t, λ ̸= µ,

x2 + 2λxt, λ = µ.

(c) Under the condition X(0) = x,

VarX(t) = sx(t)− (mx(t))
2 =


λ+ µ

λ− µ
x(e2(λ−µ)t − e(λ−µ)t), λ ̸= µ,

2λxt, λ = µ.

16. Solution. We use the criterion (51) and (56) in textbook.

(a) Note that
∞∑
x=1

µ1 · · ·µx

λ1 · · ·λx

=
∞∑
x=1

x!

(x+ 1)!
=

∞∑
x=1

1

x+ 1
= ∞,

and
∞∑
x=1

λ0 · · ·λx−1

µ1 · · ·µx

=
∞∑
x=1

x!

x!
=

∞∑
x=1

1 = ∞.

Hence the process is null recurrent.

(b) Note that
∞∑
x=1

µ1 · · ·µx

λ1 · · ·λx

=
∞∑
x=1

x!

(x+ 2)!
=

∞∑
x=1

1

(x+ 1)(x+ 2)
=

∞∑
x=1

(
1

x+ 1
− 1

x+ 2

)
=

1

2
< ∞.

Hence the process is transient.
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17. Proof. Consider the embedded Markov chain (in page 102 of textbook) with

transition function

P (x, y) = Qxy =



1, x = 0, y = 1;
λx

λx + µx

= px, y = x+ 1, x ≥ 1;

µx

λx + µx

= qx, y = x− 1, x ≥ 1;

0, otherwise.

We see that the embedded chain is a birth and death chain on the nonnegative integers.

Moreover, γ0 = 1, and for x ≥ 1,

γx =
q1 · · · qx
p1 · · · px

=
µ1 · · ·µx

λ1 · · ·λx

.

Using Q26 of Chapter 1, we get (a) and (b) immediately.

18. Proof. (a) Note that γy = (µ
λ
)y. As now µ ≥ λ, so

∑
y γy = ∞. Hence ρx0 = 1

by Q17(a).

(b) If µ < λ, by Q17(b),

ρx=0 =

∑∞
y=x(µ/λ)

y∑∞
y=0(µ/λ)

y
=

(µ
λ

)x

, x ≥ 1.

19. Proof. Note that γy = (1−p
p
)y. If p ≤ 1

2
, then

∑
y γy = ∞. Hence ρx0 = 1 by

Q17(a).

If p > 1
2
, then by Q17(b),

ρx0 =

∑∞
y=x(

1−p
p
)y∑∞

y=0(
1−p
p
)y

=

(
1− p

p

)x

, x ≥ 1.

21. Solution. Using the result in page 105 of textbook, set π0 = 1, and

πx =
λ0 · · ·λx−1

µ1 · · ·µx

=
1

x!

(
λ

µ

)x

, 1 ≤ x ≤ d.

Then the stationary distribution is given by

π(x) =
πx∑d
y=0 πy

=
(λ/µ)x

x!∑d
y=0

(λ/µ)y

y!

, 0 ≤ x ≤ d.

SQ1. Let X be the time to repair a machine. Note that X ∼ Exp(1
2
).

(a)

P (X > 2) = 1− P (X ≤ 2)

= 1− (1− e−
1
2
·2) = e−1.
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Instead of memorizing the formula of P (X ≤ t) for exponential random variable X,

one can memorize its probability density function and do calculation. Recall

fX(t) =

{
1
2
e−

1
2
t if t > 0

0 otherwise.

(b) Since exponential random variable is memoryless, hence by part (a), we have

P (X > 5|X > 3) = P (X > 2) = e−1.
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SQ2. Let X1 be the time for Alice to get done, and X2 be the time for Betty. Note

that X1 ∼ Exp( 1
20
) and X2 ∼ Exp( 1

30
).

(a) Then, by (19) on p.90 of our textbook, we have

P (X1 < X2) =
1
20

1
20

+ 1
30

=
3

5
.

This can also be verified by the following calculation (recall that X1, X2 are indepen-

dent):

P (X1 < X2) =

� ∞

0

P (X1 < t|X2 = t)fX2(t)dt

=

� ∞

0

(1− e−λ1t)λ2e
−λ2tdt

= 1− λ2

λ1 + λ2

=
λ1

λ1 + λ2

,

where λ1, λ2 are the rates of X1, X2. (λ1 = 1/20, λ2 = 1/30.)

(b) Let X = max{X1, X2}. Then, by independence of the two r.v.’s

P (X < t) = P (X1 < t,X2 < t)

= P (X1 < t)P (X2 < t)

= (1− e−λ1t)(1− e−λ2t)

= 1− e−λ1t − e−λ2t + e−(λ1+λ2)t.

Hence, fX(t) = λ1e
−λ1t + λ2e

−λ2t − (λ1 + λ2)e
−(λ1+λ2)t for t ≥ 0. The expected amount

of time until Alice and Betty are both done is

E(X) =

� ∞

0

tfX(t)dt =
1

λ1

+
1

λ2

− 1

λ1 + λ2

= 38.

Another approach to do this question is by considering

X1 +X2 = max{X1, X2}+min{X1, X2}.

Taking E(·) on both sides, and recall that if X1 and X2 are independent exponential

random variables with rates λ1, λ2, then min{X1, X2} is an exponential random variable

with rate λ1 + λ2, we obtain

20 + 30 = E(X) +
1

1
20

+ 1
30
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SQ3. Let X1, X2, X3 be the amount of time that Ron, Sue, Ted will stay in the

office. Note that X1 ∼ Exp(1), X2 ∼ Exp(2), X3 ∼ Exp(3), and they are independent.

(a). We may condition on whos is the first one to leave. For example, if Ron is the

first one to leave, then the expected time until only one student remains is min{X2, X3}.
Let Fi be the event that {Xi = min{X1, X2, X3}}. Then, the expected time is given by

E[min{X2, X3}|F1]P (F1) + E[min{X3, X1}|F2]P (F2) + E[min{X1, X2}|F3]P (F3).

As an example, we may calculate E[min{X2, X3}|F1]P (F1). Note that for t > 0,

E[min{X2, X3}|F1]P (F1) =
1

P (F1)
P (X1 < min{X2, X3} < t)

=
1

P (F1)

� t

0

P (X1 < s)fmin{X2,X3}(s)ds

=
1

P (F1)

� t

0

(1− e−λ1s)(λ2 + λ3)e
−(λ2+λ3)sds

=
λ2 + λ3

P (F1)

� t

0

e−(λ2+λ3)s − e−(λ1+λ2+λ3)sds

= 1− λ1 + λ2 + λ3

λ1

e−(λ2+λ3)t +
λ2 + λ3

λ1

e−(λ1+λ2+λ3)t.

The last step uses the fact that P (F1) = λ1/(λ1 + λ2 + λ3). One may calculate the

average time by the formula

E[min{X2, X3}|F1] =

� ∞

0

P (min{X2, X3} > t|F1)dt.

This is legitimate only when the random variable X satisfies X ≥ 0. Or one can first

find the probability density function fX(t) and integrate
�∞
0

tf(t)dt. Hence,

E[min{X2, X3}|F1] =
λ1 + λ2 + λ3

λ1(λ2 + λ3)
− λ2 + λ3

λ1(λ1 + λ2 + λ3)

=
1

λ1 + λ2 + λ3

+
1

λ2 + λ3

=
11

30
.

Using the formula above, one can show thatE[min{X3, X1}|F2] = 5/12 and E[min{X1, X2}|F3] =

5/12. Therefore, the required expected amount of time is

11

30
· 1
6
+

5

12
· 2
6
+

1

2
· 3
6
=

9

20
.

(b). Since X2 and X3 are independent, the probability that Ron is the last student

to left is

P (X1 > max{X2, X3}) =
� ∞

0

P (max{X2, X3} < t)fX1(t)dt

=

� ∞

0

P (X2 < t)P (X3 < t)fX1(t)dt

=

� ∞

0

(1− e−λ2t)(1− e−λ3t)λ1e
−λ1tdt

= 1− λ1

λ1 + λ2

− λ1

λ1 + λ3

+
λ1

λ1 + λ2 + λ3

=
7

12
.
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Using the formula above, we have P (X2 > max{X3, X1}) = 4/15 and P (X3 >

max{X1, X2}) = 3/20.

(c). The required expected value is E[max{X1, X2, X3}]. Note that for t > 0, since

X1, X2, X3 are independent, we have

P (max{X1, X2, X3} < t) = P (X1 < t)P (X2 < t)P (X3 < t)

= (1− e−λ1t)(1− e−λ2t)(1− e−λ3t)

= 1− e−λ1t − e−λ2t − e−λ3t + e−(λ1+λ2)t + e−(λ2+λ3)t + e−(λ3+λ1)t − e−(λ1+λ2+λ3)t

E[max{X1, X2, X3}] =
� ∞

0

P (max{X1, X2, X3} > t)dt

=
1

λ1

+
1

λ2

+
1

λ3

− 1

λ1 + λ2

− 1

λ2 + λ3

− 1

λ3 + λ1

+
1

λ1 + λ2 + λ3

=
73

60
.

SQ4 (a). The rate matrix is given by

D =

0 1 2 3


−2 2 0 0

1 −3 2 0

0 1 −3 2

0 0 1 −1

.

(b). Note that for birth and death process, if we put

πx =
λ0 . . . λx−1

µ1 . . . µx

for x = 1, 2 and 3,

then the stationary distribution π is given by

π(x) =

{
(1 +

∑3
y=1 πy)

−1 if x = 0,

πx(1 +
∑3

y=1 πy)
−1 if x = 1, 2 or 3.

Since λ0 = λ1 = λ2 and µ1 = µ2 = µ3 = 1, it follows that

π = (1/15, 2/15, 4/15, 8/15).

The required probability is limt→∞ P (X(t) = 2) = π(2) = 4/15.
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SQ5. Let X(t) be the number of customers that we are waiting or being served at

time t.

(a). The infinite matrix is given by

D =

0 1 2 3 4 5 . . .



−2 2

2 −4 2

2 −4 2

3 −5 2

3 −5 2
. . . . . . . . .

.

(b). Note that λx = 2 for all x ≥ 0 and

µx =

{
2 if 1 ≤ x ≤ 2,

3 if x ≥ 3.

So,

πx =

{
1 if 1 ≤ x ≤ 2

(2
3
)x−2 if x ≥ 3.

Let π be the stationary distribution of this birth and death process. Since
∑∞

y=1 πy = 4,

we have

π(x) =

{
1
5

if 0 ≤ x ≤ 2,
1
5
(2
3
)x−2 if x ≥ 3.

(c).

lim
t→∞

P (X(t) = 4) = π(4) =
4

45
.
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SQ6. Let X(t) be the number of working computers at time t. The rate matrix is

given by

D =

0 1 2 3


−1/2 1/2 0 0

1/50 −13/25 1/2 0

0 2/50 −27/50 1/2

0 0 3/50 −3/50

.

This is a birth and death process with finitely many states. We can find its stationary

distribution by formula. Note that

π1 =
1
2
1
50

= 25

π2 =
(1
2
)2

1
50

2
50

=
625

2

π3 =
(1
2
)3

1
50

2
50

3
50

=
15625

6

1 +
3∑

y=1

πy =
8828
3

Therefore, the stationary distribution π is (3/8828, 75/8828, 1875/17656, 15625/17656).

The required probability is

lim
t→∞

P (X(t) = 3) = π(3) =
15625

17656
.


